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Abstract

Purpose of review This review of diffuse intrinsic pontine glioma (DIPG) provides clinical
background, a systematic approach to diagnosis and initial care, and synthesizes histor-
ical, modern, and future directions for treatment. We present evidence supporting neuro-
surgical biopsy, early palliative care involvement, limitation of glucocorticoid use, and the
leveraging of preclinical DIPG models as a pipeline to next-generation clinical trials.
Recent findings New molecular understanding of pediatric high-grade gliomas has led to
the reclassification of DIPG as one member of a family of diffuse gliomas occurring in the
midline of the central nervous system that exhibit pathognomonic mutations in genes
encoding histone 3 (H3 K27M). DIPG remains a clinically relevant term, though diagnos-
tically the 80% of DIPG cases that exhibit the H3 K27M mutation have been reclassified as
diffuse midline glioma, H3 K27M-mutant. Re-irradiation has been shown to be well-
tolerated and of potential benefit. Epigenetic targeting of transcriptional dependencies
in preclinical models is fueling molecularly targeted clinical trials. Chimeric antigen
receptor T cell immunotherapy has also demonstrated efficacy in preclinical models and
provides a promising new clinical strategy.
Summary DIPG is a universally fatal, epigenetically driven tumor of the pons that is
considered part of a broader class of diffuse midline gliomas sharing H3 K27M mutations.
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Radiation remains the standard of care, single-agent temozolomide is not recommended,
and glucocorticoids should be used only sparingly. A rapid evolution of understanding in
the chromatin, signaling, and immunological biology of DIPG may soon result in clinical
breakthroughs.

Introduction

While diffuse intrinsic pontine glioma (DIPG) has
remained a fatal disease since Wilfred Harris’ initial
description of a pontine glioma in 1926, we now stand
upon the precipice of clinical breakthroughs [1]. Scien-
tific discoveries of the past decade have revolutionized
our molecular understanding of DIPG, leading to a new
diagnostic classification, “diffuse midline glioma, H3
K27M-mutant,” based on pathognomonic histone 3
(H3) K27M mutations present in ~ 80% of DIPG cases
[2, 3••, 4••, 5••]. However, as DIPG and other diffusely
infiltrating gliomas are not surgically resectable and
many children are diagnosed based on the radiographic
criteria alone, the molecular characteristics of each tu-
mor are often not evaluated [6–8]. A lack of tissue for

diagnosis and research has hampered progress; in com-
parison, other routinely resected pediatric central ner-
vous system (CNS) tumors have been molecularly
subgrouped with next-generation sequencing. Such
granular subtype classifications in other pediatric CNS
malignancies are beginning to enable tailored therapeu-
tic approaches [9–11]. However, the combined power of
new experimental models of DIPG and the demonstrat-
ed safety of neurosurgical biopsy has provided an ave-
nue for translating preclinical testing to next-generation
molecularly and immunologically targeted therapies
that may soon make an impact on the lives of children
with DIPG [12, 13•, 14, 15••, 16•, 17–20, 21•, 22–27].

Epidemiology

DIPG accounts for approximately 10% of all CNS tumors and 80% of all
brainstem gliomas occurring in children, affecting ~ 300 children per year in
the United States (US) [28]. The median age at diagnosis is 6 to 7 years with a
relatively equal sex distribution [29•, 30, 31]. With a median overall survival of
only 9–11 months, DIPG represents the leading cause of brain tumor–related
death in children [29•]. The median progression-free survival is 7 months and
survival beyond progression is 2–4 months [29•]. Considering the median-
affected age, the incidence, and the fatal prognosis, each year DIPG is respon-
sible for approximately 24,000 years of potential life lost in the US. Rarely,
DIPG also occurs in adults.

Diagnostic evaluation

Children affected by DIPG typically present following a median of 1 month of
symptoms, although many present with as few as several days of symptoms;
and occasionally, prodromes have been reported to be as long as 16 months
[30]. Children frequently present with a triad of symptoms including ataxia,
pyramidal tract dysfunction, and an abducens nerve (cranial nerve VI) palsy.
The abducens palsy is present in the vast majority of children at diagnosis and is
usually the first sign of DIPG [32]. In general, any potentially related symptoms
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lasting longer than 6 months should prompt a broader differential of possible
diagnoses including pilocytic astrocytoma, embryonal tumor, demyelinating
disease, or vascular disease. In contrast to DIPG, pilocytic astrocytomas (WHO
grade I) are most often exophytic and well-circumscribed, display a cyst/mural
nodule formation, and are enhanced with contrast on magnetic resonance
imaging (MRI). While DIPG most often originates in the ventral pons and
presents acutely, exophytic low-grade gliomas of this region aremore common-
ly tectal, pontomedullary, or cervicomedullary and present with indolent head-
aches or feeding intolerance [33]. Embryonal tumors commonly have a more
heterogenous enhancement pattern on imaging and, at least in other CNS
locations, produce extensive peritumoral edema. Large pediatric neuro-
oncology practices regularly receive outside referrals for children with DIPG
treated as another entity or observed for prolonged periods, as well as cases of
suspected DIPG ultimately determined to be another diagnosis. Demyelinating
processes are relatively rare in children and can often be distinguished from
malignancy with MRI diffuse tensor imaging (DTI) fiber tracking [34].

The best diagnostic study to evaluate a child with suspected DIPG is an MRI
of the brain with and without contrast, which will demonstrate an expanded
pons and encasement of the basilar artery. The T2 FLAIRMRI sequence typically
demonstrates signal in greater than 50% of the ventral pons (basis pontis;
Fig. 1). Classically, DIPG does not exhibit contrast enhancement on T1 post-
contrast images, though not infrequently there will be some areas of enhance-
ment especially around foci of necrosis. Advanced MRI sequences may play a
role in managing DIPG; one report indicates that apparent diffuse coefficient
(ADC) images may distinguish distinct prognostic groups, and patients with
high ADC values (9 1300) exhibited improved survival [35]. While the epicen-
ter and origin of DIPG is within the pons, regional dissemination into the
cerebellum, and even distant spread within the central nervous system, can be
present at diagnosis. Dissemination throughout the central nervous system is
common over the disease course; in a post-mortem review, disease was identi-
fied in the medulla (63%), midbrain (63%), lateral ventricles (63%), cerebel-
lum (56%), thalamus (56%), frontal lobe (25%), and hippocampus (25%), as
well as infratentorial leptomeningeal disease in 31% and supratentorial

Fig. 1. MRI images of a radiographically classic DIPG, including a axial T2 FLAIR and b sagittal T1 post-contrast images. Diffuse
enlargement of the ventral pons and encasement of the basilar artery are classic signs.
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leptomeningeal disease in 25%of patients [36]. Spinal cord disease at diagnosis
is also possible, so we recommend MRI of the total spinal cord with and
without contrast be performed in the event of any potentially related symp-
toms. Ongoing consideration of spinal imaging is warranted as DIPG can
spread aggressively, even early in its clinical course. Historically, lumbar punc-
ture has not been performed routinely in children with DIPG but considering
the incidence of metastatic disease, it may be reasonable and is likely clinically
safe to perform in children without evidence of hydrocephalus. Furthermore,
while DIPG is not currently diagnosed via lumbar puncture, the advent of
testing for circulating tumor DNA (ctDNA, detecting the H3 K27M mutation)
soon may allow institutions without neurosurgical expertise in DIPG biopsy to
evaluate molecular characteristics of this disease via CSF [37•, 38, 39]. Finding
the H3 K27M mutation enables better prognostication for families and allows
for consideration of early phase trials that may only be available for particular
molecular subgroups.

Prior to the 2016 change in WHO nomenclature, DIPG histological grading
ranged fromWHO grades II to IV, although histological grade did not correlate
with prognosis [2, 40]. However, the 2016 WHO CNS tumor reclassification
defined a new entity that encompasses 80% of DIPG tumors: diffuse midline
glioma, H3 K27M-mutant (DMG), which is by definition grade IV [2]. Many
institutional and commercial sequencing platforms are able to identify the
pathognomonic K27M mutations in the histone 3.3 (H3.3) gene H3F3A,
histone 3.2 (H3.2) gene HIST2H3C, and histone 3.1 (H3.1) genes HIST1H3B/
C, though the most cost-effective test is immunohistochemistry for the H3
K27M mutation (which does not distinguish between H3.3, H3.2, or H3.1
mutant variants) [41, 42]. Because the H3 K27M mutation results in dysfunc-
tion of the polycomb repressive complex II (PRC2) and subsequently in H3
K27 hypomethylation, immunostaining for H3 K27-me3 is complementary for
H3 K27M-mutant gliomas of the pons and diffuse gliomas found in other
midline structures such as the thalamus and spinal cord [43, 44]. The H3.1
variant occurs at a younger median age compared to the H3.3 variant, is more
prevalent in females, and is only found in pontine DMG [45••]. The ~ 20% of
DIPG tumors that do not express an H3 K27M mutation are not encompassed
by the H3 K27M-mutant DMG definition and should not be overlooked as an
important subgroup of DIPG tumors whose biology requires dedicated study.

Current treatments

In order to stabilize neurologic symptoms, dexamethasone is the most com-
mon initially prescribed treatment for children with newly diagnosed (or
suspected) DIPG. A majority of children do not have hydrocephalus or require
emergent neurosurgical intervention. A minority of children, either due to
prolonged periods of symptom observation, large evolving necrotic centers, or
biologically rapid disease, require emergent radiation and/or treatment of
hydrocephalus (e.g., with a third ventriculostomy) [46]. Radiation oncologists
should be consulted immediately even if a period of diagnostic evaluation and
emotional preparation for families is planned prior to the initiation of radio-
therapy. Stereotactic needle biopsy should be considered if the imaging appear-
ance is not classical or if a tissue diagnosis will enable possible enrollment on a
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molecularly stratified clinical trial. Molecular findings are required for some
current clinical trials, and aminority of childrenmay be found to have clinically
actionablemutations even outside of clinical trials. The safety of pontine biopsy
at experienced centers is highlighted in several reports, including a prospective
evaluation of 50 children biopsied at 23 institutions that reported no
procedure-related deaths and infrequent toxicity, with two grade 3 adverse
events (apnea, hypertension) during the procedure and one subject with a
neurological toxicity from which they did not recover (hemiparesis) [21•].
Experienced neurosurgeons can provide the most appropriate counseling, but,
in brief, while neurological adverse events are rare, they can be severe [19, 21•,
24, 25, 27]. Biopsy should not inherently delay radiation as radiation planning
can be done while neurosurgical biopsy is being considered.

Dexamethasone best serves as a bridge through possible neurosurgical
biopsy and the initiation of radiation, but should be weaned off completely
as quickly as tolerated due to adverse effects of corticosteroids including im-
paired sleep, impaired wound healing, increased appetite/weight gain, psycho-
logical and behavioral disturbances, diabetes mellitus, immunosuppression,
and Cushing syndrome [47–50]. Dexamethasone may have an even more
detrimental effect relating to the treatment of DIPG, as corticosteroids close
the blood–brain barrier and thereby potentially limit tumor tissue penetration
of potential systemic therapies [51, 52]. Furthermore, dexamethasone causes a
specific gene-expression pattern in high-grade gliomas that portends a worse
overall survival [53•, 54]. Ultimately, while dexamethasone may have a role in
short bursts, children on prolonged steroids are at high risk for decreased
quality of life. Tachyphylaxis to corticosteroids represents another reason to
minimize corticosteroid use. The planned strategy for corticosteroid use and the
expected side effects represents a conversation best initiated early with families
and patients.

A critical early consideration should be the consultation of pediatric ad-
vanced care or pediatric palliative care specialists. Offering palliative care ser-
vices to all patients with DIPG or DMG early in the course provides personal-
ized support for the immediate and ongoing physical, psychological, social, and
other effects this presently lethal prognosis will have on a family. Combined
neuro-oncologic and palliative care support maximizes how patients and fam-
ilies function during their treatment and even can help to identify disease-
related changes before otherwise clinically or radiographically suspected pro-
gression [55].

Focal radiotherapy remains the standard of care for children with
DIPG and increases overall survival by ~ 3 months; without radiotherapy,
overall survival is only ~ 5 months [56]. Radiation is most commonly
delivered using photon radiotherapy conformally delivered to the tumor
at 54 Gy in 1.8-Gy daily fractions over 6 weeks. A hypo-fractionated
approach using 39 Gy in 13–16 fractions appears to have similar out-
comes and results in less medical burden, especially for young children
requiring sedation [57, 58]. A hyperfractionated approach to 78 Gy did
not provide a survival benefit and potentially increased steroid depen-
dence and a severely hypo-fractionated approach of 25 Gy in only 5
fractions may have shortened survival and increased radiation necrosis
[59, 60]. After disease progression, re-irradiation may also be considered.
Re-irradiation regimens of approximately 25 Gy over 10 fractions
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repeatedly have been demonstrated to be safe and suggest a modest
survival benefit, as well as a stabilization or improvement in symptoms
[61–64].

More than 200 clinical trials of conventional cytotoxic and
myeloablative chemotherapy have failed to improve survival in children
with DIPG [65]. Radiosensitizing agents during radiotherapy have thus
far failed to improve survival [66–68]. Likewise, intensive chemothera-
peutic treatment regimens, including myeloablative dosing requiring stem
cell transplantation, have not shown promise [69, 70]. Despite modest
efficacy in adult high-grade gliomas, single-agent temozolomide does not
improve DIPG outcomes in either conventional or metronomic dosing
[71–74]. Most recently, gemcitabine, capecitabine, several tyrosine kinase
inhibitors most often targeting VEGF or EGFR, and an EGFR monoclonal
antibody have been evaluated in DIPG without major improvements in
survival, although the EGFR inhibitor gefitinib’s 1-year median OS of
56% is higher than many historical reports [75–83]. This overall lack of
response to traditional chemotherapeutic agents is concordant with a
broad lack of response to most cytotoxic chemotherapeutics of DIPG cell
cultures in drug screens, and underscores the need for therapies targeting
the unique biology of DIPG and an effective means by which to deliver
those putative therapies to this cancer with a relatively intact blood–brain
barrier [20].

Future treatments

The advent of genetically engineered and patient-derived experimental models
now provides a critical avenue for deepening our biological understanding of
DIPG and preclinical therapeutic testing [17, 18, 22, 23, 26]. Epigenetically
targeted agents are of particular interest, both conceptually and empirically
from preclinical drug screens [20]. Supported by preclinical studies, the clinical
efficacy of the HDAC inhibitor panobinostat is now being evaluated in several
clinical trials (e.g., NCT02717455) [20]. A subsequent preclinical study of
epigenetic strategies identified several other agents that target oncogenic tran-
scription, such as through CDK7 blockade or bromodomain inhibition [15••].
While not ready for clinical translation, jumonji demethylase inhibitors also
appear to exhibit modest preclinical benefit, enforcing the concept of targeting
aberrant transcription in DIPG [84].

Immunotherapeutic agents including vaccine therapies, oncolytic vi-
ruses, checkpoint blockade, and chimeric antigen receptor (CAR) T cells
account for the upcoming next wave of DIPG clinical trials as more
experience is garnered in other CNS tumors [13•, 85•, 86]. Critically,
recent independent evaluations revealed the DIPG microenvironment to
be neither highly immunosuppressive nor inflammatory, making it fun-
damentally different from adult glioblastoma [14, 16•]. In the absence of
innate immunosuppression, CAR T cells are particularly promising on the
heels of their revolutionary benefit in leukemia [87]. In preclinical in vivo
studies, CAR T cells targeting GD2, a disialoganglioside highly expressed
in H3 K27M-mutant DMG, eradicated H3 K27M-mutant DMG tumors in
xenograft models; additional targets for CAR T cell therapy such as B7H3
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have also recently come to light [88•, 89•]. A clinical trial of GD2-specific
CAR T cell therapy for DIPG is presently in preparation. Currently,
c l inical t r ials of HER2-speci f ic CAR T cel ls (BrainChild-01,
NCT03500991) and EGFR806-specific CAR T cells (BrainChild-02,
NCT03638167) are evaluating locoregional delivery of CAR T cells in
children with refractory or recurrent CNS tumors. While these have ex-
cluded DIPG, their insight into CNS inflammatory responses will inform
BrainChild-03, a clinical trial of B7-H3-specific CAR T cells presently in
preparation for children with DIPG.

Finally, novel therapy delivery strategies are emerging including convection-
enhanced delivery (CED), in which catheter tips are neurosurgically inserted
into the pons and a pressure gradient is used to deliver regional therapy [90].
While DIPG is often a metastatic disease, the most critical pontine disease does
likely have innate protection from systemic chemotherapy, such as through the
blood–brain barrier or intrinsic high pressure, so CED is currently being eval-
uated in early phase clinical trials [91].

Conclusion

DIPG remains a universally fatal disease with a median survival of under
1 year. While the diagnosis is often made by MRI, neurosurgical biopsy is
safe and is becoming more common in an effort for improved diagnosis,
prognostication, and therapeutic targeting. The discovery of H3 K27M
mutations has revolutionized our understanding of DIPG biology, creat-
ing the new diagnostic class H3 K27M-mutant diffuse midline gliomas,
which includes thalamic and spinal tumors with similarly dismal prog-
noses. Radiation remains the mainstay of therapy, and re-irradiation at
the time of tumor progression appears safe and can confer modest
improvements in symptoms and in survival. Glucocorticoid use should
be carefully minimized, and single-agent temozolomide has no role in
DIPG therapy. The H3 K27M mutation results in transcriptional depen-
dencies that may be leveraged with epigenetically targeted agents, some of
which are currently being evaluated in clinical trials. Complimentary
preclinical models of DIPG form the foundation of a preclinical to
clinical pipeline as we further investigate the role of immunotherapies
and, ultimately, combinatorial approaches targeting both cell-intrinsic
vulnerabilities and microenvironmental dependencies in the search for a
cure of this seemingly intractable childhood brain cancer.
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